_UMICS Member of seansonic Group

LuOcean Mini 4

LU09xxDyyy Diode Laser with up to 70 W at 9xxnm

Options:

Description:

The Lumics LuOcean Mini H diode laser series offers OEM integrators an excellent product to manufacture state-of-the-art end-user laser systems.

The easy integration and safe use of these laser components in combination with several accessories and features give the chance to be costefficient in development and manufacturing.

Features & Functions:

- Wavelength 915/940/975nm
- (105/200/400) μm NA 0.22 fiber
- Emitter electrically in series
- Temperature sensor
- Red or green pilot Fiber & Power monitor

Exchangeable window

- OEM LD driver & cooler
- Controllable pilot intensity

Benefits:

- Single emitter long lifetime
- Passive cooling
- Sealed housing
- Small foot print
- SMA connector

Applications:

- Therapeutic
- Dental
- Dermatology
- Veterinary
- Pumping

Connector - laser diode supply

Molex TM connector (Part No. 172064-0006). Pin connection dependant on individual electro-optical configuration. Maximum current per pin is 26 A if total current to cathode exceeds 26 A two pins must be connected to cathode of driver board **Counterparts for external cable** Molex Mega-Fit Receptacle Housing Part No. 171692-0106 Molex Mega-Fit Female Crimp Terminal Part No. 76823-0322

Connector - signals

Connector on laser module Part No. (Mini revision 3 3M 159112-5012) (Mini revision 4 with locking Molex 87833-1231) **Counterpart for external cable** Molex Milli Grid Cable to Board Receptacle Part No. 87568-1273 with locking ramp. Flat ribbon cable with pitch of 1mm and AWG28

Pin	Configuration
1	Laser diode cathode (-)
2	no connection
3	no connection
4	no connection
5	no connection

6 Laser diode anode (+)

n Configuration Supply +12V

- 2 Fiber Sensor 1 Out (0-12V) (*)
- 3 GND1
- 4 Fiber Sensor 2 Out (0-12V) (*)
- 5 Monitor Photo Diode 1 Out (0-4)V (*)
- 6 Pilot Supply (5 V red, 8 V green) (*)
- 7Monitor Photo Diode 2 Out (0-4)V (*)8Pilot GND2
- 9 NTC / PT100 / LM35 Supply 5V (*)
- 10 Pilot intensity control In (0-5)V (*)
- 11 NTC / PT100 / LM35 Signal (*)

12 No connection

* optional

We manufacture diode lasers.

Electrical and Optical Characteristics (Typical laser specifications at 25° C *)

	Fiber	Core Diameter		
Symbol (Conditions)				
P _{op} (c.w.)	30	47	70	W
λ _{peak} (c.w.)	915 ± 10	on request	915 ± 10	nm
λ _{peak} (c.w.)	940 ± 10	940 ± 10	940 ± 10	nm
λ _{peak} (c.w.)	975 ± 10	975 ± 10	975 ± 10	nm
λ _{FWHM}	1-7	1-7	1-7	nm
$\lambda_{T_{shift}}$	0.3	0.3	0.3	nm/K
λι_shift	0.8	0.6	0.4	nm/A
I _{op} (c.w. at P _{op})	12	15	24	А
I _{op} (c.w. at P _{op})	13	16	27	А
V _{op} (c.w.)	7	7	7	V
l _{th}	< 0.7	< 1.4	< 2.6	А
	41	45	45	%
	105	200	400	μm
	+-10	+-10	+-10	μm
NA	0.22	0.22	0.22	
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c } \hline Fiber \\ \hline Fop (c.w.) & 105 \mu m \\ \hline P_{op} (c.w.) & 915 \pm 10 \\ \hline \lambda_{peak} (c.w.) & 915 \pm 10 \\ \hline \lambda_{peak} (c.w.) & 940 \pm 10 \\ \hline \lambda_{peak} (c.w.) & 975 \pm 10 \\ \hline \lambda_{FWHM} & 1-7 \\ \hline \lambda_{T_{shift}} & 0.3 \\ \hline \lambda_{L_{shift}} & 0.3 \\ \hline \lambda_{L_{shift}} & 0.8 \\ \hline \\ \hline I_{op} (c.w. at P_{op}) & 12 \\ \hline I_{op} (c.w. at P_{op}) & 13 \\ \hline V_{op} (c.w.) & 7 \\ \hline I_{th} & <0.7 \\ \hline \\ \hline & 105 \\ + 10 \\ \hline \\ NA & 0.22 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Fiber Core Diameter 200 \mu m \\ \hline 105 \mu m & 200 \mu m \\ \hline \hline P_{op} (c.w.) & 30 & 47 \\ \hline $\lambda_{peak} (c.w.) & 915 \pm 10 & on request \\ \hline $\lambda_{peak} (c.w.) & 940 \pm 10 & 940 \pm 10 \\ \hline $\lambda_{peak} (c.w.) & 975 \pm 10 & 975 \pm 10 \\ \hline $\lambda_{FWHM} & 1-7 & 1-7 \\ \hline $\lambda_{TShift} & 0.3 & 0.3 \\ \hline $\lambda_{LShift} & 0.8 & 0.6 \\ \hline \hline \\ \hline $L_{op} (c.w. at P_{op}) & 12 & 15 \\ \hline $L_{op} (c.w. at P_{op}) & 13 & 16 \\ \hline $V_{op} (c.w.) & 7 & 7 \\ \hline $L_{th} & <0.7 & <1.4 \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline Symbol (Conditions) & 105 \mu m & 200 \mu m \\ \hline 105 \mu m & 200 \mu m & 400 \mu m \\ \hline P_{op} (c.w.) & 30 & 47 & 70 \\ \hline \lambda_{peak} (c.w.) & 915 \pm 10 & on request & 915 \pm 10 \\ \hline \lambda_{peak} (c.w.) & 940 \pm 10 & 940 \pm 10 & 940 \pm 10 \\ \hline \lambda_{peak} (c.w.) & 975 \pm 10 & 975 \pm 10 & 975 \pm 10 \\ \hline \lambda_{FWHM} & 1-7 & 1-7 & 1-7 \\ \hline \lambda_{T,Shift} & 0.3 & 0.3 & 0.3 \\ \hline \lambda_{L} Shift & 0.8 & 0.6 & 0.4 \\ \hline \\ \hline I_{op} (c.w. at P_{op}) & 12 & 15 & 24 \\ \hline I_{op} (c.w. at P_{op}) & 13 & 16 & 27 \\ \hline V_{op} (c.w.) & 7 & 7 & 7 \\ \hline I_{th} & <0.7 & <1.4 & <2.6 \\ \hline \\ $

Options

Parameter	Symbol	Min	Тур	Мах	Unit
Pilot Beam (Options)					
Pilot Beam Output Power	red/green - adjustable	0	3/0.5	3/1	mW
Pilot Beam Wavelength	red/green		650±10 / 520±10		nm
Pilot Beam Operating Voltage	red/green		4/7	5/8	V
Pilot Beam Operating Current	red/green			<35/125	mA
Pilot Beam Intensity Control Voltage	red/green	0(max. Intensity)		5(min. Intensity)	V
Sensors (Options)					
Power Monitor Supply Voltage		10	12	14	V
Power Monitor Signal Voltage		0		4 (at max. Power)	V
Fiber Detection Sensor Supply Voltage		10	12	14	V
Fiber Detection Sensor Signal Voltage		0	12	14	V
Temperature Sensor		Standard NTC (10	k) or optional (PT100	or LM35)	

Notes: * taken at internal temperature sensor, Laser wavelength **880nm - 920nm for any fiber core and 930nm - 1000nm for fiber core <=105(200)µm** require an AR <0.7% (+10nm around peak wavelength) coated fiber facet or end cap on fiber facet module side or power reduction of 30(15)%. Avoid direct feedback from materials like mirrors, optics, processed material etc. back into laser module via the fiber cable by more than 10%. (1) Power is measured ex fiber according to given fiber specifications including measures and tolerances of fiber and ferrules for uncoated fiber facets (exception see *).

(i)) rower is interesting to show a decoding to given how spectrations including interactions of the decoding to the interaction and the interaction interaction including interactions in the interaction interaction interaction interaction in the interaction interaction

(4) Red and green minimum pilot power is set at factory by customer request. Standard is 3/0.5 mW.
(5) Adjust trimpot R6 to set maximum intensity with pin 10 control left open or set to 0.5V
(6) Adjust trimpot R4 to set intensity off with pin 10 control set to 5V

(a) capacital and point to be intensity on the pair to control set to 3° (7) Calculation of the thermal load and necessary thermal resistance of a heat sink to maintain internal diode temperature of 25°C : Thermal load = Output power * (1/conversion efficiency - 1) Heat sink thermal resistance = (25 °C - ambient temperature) / thermal load

We manufacture diode lasers.

Fiber Connector

(1) Lumics laser diode fiber coupling technology ensures loss into the fiber cladding of <10%(7/8/9/10/14xxnm for fiber core $<=105\mu$ m), <3%(7/8/9/10/14xxnm for fiber core $>=200\mu$ m) and <20/(10)%(19xxnm for fiber core $>=200(400)\mu$ m) of the total power if the fiber centricity (typically $<=10\mu$ m), ferrule diameter and distance of the fiber end facet to the reference plane complies with shown technical drawing and the Lumics fiber data sheet. Use a fiber microscope to check for dust free fiber end facet and fiber centricity.

(2) Free standing fibers suffer from higher risk of fiber damage to the fiber tip due to mechanical stress by handling and the fiber end facet can not be polished as simple as for not free standing fibers.

(3) For more information see the Lumics fiber data sheet http://www.lumics.de/wp-content/uploads/lu_fiber_patchcords.pdf

General Parameters / Accessories

Parameter	Symbol	Min	Тур	Max	Unit
Storage Temperature	Ts	-10		55	°C
Internal operating * and (Ambient) temp , c.woperation **	T _{op c.w.}	10(5)		35(40)	°C
Humidity / Non-condensing Atmosphere				90	%
Thermal heat sink resistance				0.1	k/W
Maximum fiber flange temperature				50	°C
Weight			160		g
Compliance			CE, ROHS		

Further Options (Please ask for quotation if needed)

Optical fiber patchcord, Laser diode drivers for each individual wavelength, Interface cable, OEM laser diode driver and temperature controller * taken at internal temperature sensor ** we recommend to operate the laser above dew point. Below dew point water condensation on the exit window may damage the window

when laser is switched on. If the module was stored below dew point before operation dry the window by pre-heating the module to 25°C

User Safety

Important Note Read and carefully follow operating manual instructions. Especially, whenever power supply is switched on or off, always disconnect from laser module. See manual for details. Uncontrolled on / off switching may cause spikes and result in fatal device damage. This product is not certified by with IEC 60825-1 or 21CFR1040.10/21CFR1040.11 and and must comply with the applicable regulations by the Purchaser if sold as laser product.

We manufacture diode lasers.